
ASSAM: A Tool for Semi-Automatically
Annotating Semantic Web Services

Andreas Heß, Eddie Johnston, and Nicholas Kushmerick

Computer Science Department, University College Dublin, Ireland
{andreas.hess, eddie.johnston, nick}@ucd.ie

Abstract. The semantic Web Services vision requires that each service
be annotated with semantic metadata. Manually creating such metadata
is tedious and error-prone, and many software engineers, accustomed to
tools that automatically generate WSDL, might not want to invest the
additional effort. We therefore propose ASSAM, a tool that assists a user
in creating semantic metadata for Web Services. ASSAM is intended for
service consumers who want to integrate a number of services and there-
fore must annotate them according to some shared ontology. ASSAM is
also relevant for service producers who have deployed a Web Service and
want to make it compatible with an existing ontology. ASSAM’s capa-
bilities to automatically create semantic metadata are supported by two
machine learning algorithms. First, we have developed an iterative rela-
tional classification algorithm for semantically classifying Web Services,
their operations, and input and output messages. Second, to aggregate
the data returned by multiple semantically related Web Services, we have
developed a schema mapping algorithm that is based on an ensemble of
string distance metrics.

1 Introduction

The vision of semantic Web Services is to provide the means for fully automated
discovery, composition and invocation of loosely coupled software components.
One of the key efforts to address this “semantic gap” is the well-known OWL-S
ontology [1].

However, software engineers who are developing Web Services usually do not
think in terms of ontologies, but rather in terms of their programming tools.
Existing tools for both the Java and .NET environments support the automatic
generation of WSDL. We believe that it would boost the semantic service web if
similar tools existed to (semi-) automatically generate OWL-S or a similar form
of semantic metadata.

In this paper we will present a tool called ASSAM—Automated Semantic
Service Annotation with Machine Learning—that addresses these needs. AS-
SAM consists of two parts, a WSDL annotator application, and OATS, a data
aggregation algorithm.

We describe the WSDL annotator application in Sec. 2. This component of
ASSAM uses machine learning to provide the user with suggestions on how to

annotate the elements in the WSDL. In Sec. 3 we describe the iterative rela-
tional classification algorithm that provides these suggestions. We evaluate our
algorithms on a set of 164 Web Services.1

Second, in Sec. 4, we will describe OATS, a novel schema mapping algorithm
specifically designed for the Web Services context, and empirically demonstrate
its effectiveness on 52 invokable Web Service operations. OATS addresses the
problem of aggregating the heterogenous data from several Web Services.

2 ASSAM: A Tool for Web Service Annotation

One of the central parts of ASSAM is the WSDL annotator application. The
WSDL annotator is a tool that enables the user to semantically annotate a Web
Service using a point-and-click interface. The key feature of the WSDL annotator
is the ability to suggest which ontological class to use to annotate each element
in the WSDL.

Use Cases. ASSAM is designed primarily for users who want to annotate many
similar services. Typically, these will be end users wanting to integrate several
similor Web Services into his or her business processes. But the annotation task
might also be performed by a centralized semantic Web Service registry.

Our tool could also be useful for programmers who are only interested in
annotating a single Web Service they have created.2 In order to make his or her
service compatible with existing services, a developer might want to annotate it
with the same ontology that has already been used for some other Web Services.
The developer could import the existing Web Services in ASSAM and use them
as training data in order to obtain recommendations on how to annotate his or
her own service.

Functionality. Fig. 1 shows the ASSAM application. Note that our application’s
key novelty—the suggested annotations created automatically by our machine
learning algorithm—are shown in the small pop-up window.

The left column in the main window contains a list of all Web Services
currently and the category ontology. Web Services can be associated with a
category by clicking on a service in a list and then on a node in the category
tree. When the user has selected a service and wants to focus on annotating it
this part of the window can be hidden.

The middle of the window contains a tree view of the WSDL. Port types,
operations, messages and complex XML schema types are parsed from the WSDL
and shown in a tree structure. The original WSDL file is also shown as well as
plain text descriptions from the occasional documentation tags within the WSDL
or a plain text description of the service as a whole, such as often offered by a
UDDI registry or a Web Service indexing web site.
1 All our our experimental data is available in the Repository of Semantic Web Services
http://smi.ucd.ie/RSWS.

2 Thanks to Terry Payne who pointed out this use case.

Fig. 1. ASSAM uses machine learning techniques to semi-automatically annotate Web
Services with semantic metadata.

When the user clicks on an element in the WSDL tree view, the correspond-
ing ontology is shown in the right column and the user can select an appropriate
class by clicking on an element in the ontology view. Currently different on-
tologies for datatypes and operations are used. At present we allow annotation
for operations, message parts and XML schema types and their elements. Port
types or messages cannot be annotated, because there is no real semantic mean-
ing associated with the port type or the message itself that is not covered by the
annotation of the operations or the message parts.

Once the annotation is done it can be exported in OWL-S. The created
OWL-S consists of a profile, a process model, a grounding and a concept file if
complex types where present in the WSDL. Note that this also includes XSLT
transformations as needed in the OWL-S grounding to map between the tradi-
tional XML Schema representation of the input and output data and the OWL
representation.

Limitations. Because we do not handle composition and workflow in our machine
learning approach, the generated process model consists only of one atomic pro-
cess per operation. The generated profile is a subclass from the assigned category
of the service as a whole – the category ontology services as profile hierarchy.
The concept file contains a representation of the annotated XML schema types
in OWL-S. Note that it is up to the ontology designer to take care that the
datatype ontology makes sense and that it is consistent. No inference checks
are done on the side of our tool. Finally, the a grounding is generated that also
contains the XSLT mappings from XML schema to OWL and vice versa.

For the OWL export, we do not use the annotations for the operations at
the moment, as there is no direct correspondence in OWL-S for the domain of

an operation. Atomic processes in OWL-S are characterized only through their
inputs, outputs, preconditions and effects; and for the profile our tool uses the
service category.

Related Work. Paolucci et al addressed the problem of creating semantic meta-
data (in the form of OWL-S) from WSDL [2]. However, because WSDL contains
no semantic information, this tool provides just a syntactic transformation. The
key challenge is to map the XML data used by traditional Web Services to classes
in an ontology.

Currently, Patil et al [3] are also working on matching XML schemas to
ontologies in the Web Services domain. They use a combination of lexical and
structural similarity measures. They assume that the user’s intention is not to
annotate similar services with one common ontology, rather they also address
the problem of choosing the right domain ontology among a set of ontologies.

Sabou [4] addresses the problem of creating suitable domain ontologies in the
first place. She uses shallow natural language processing techniques to assist the
user in creating an ontology based on software APIs.

3 Iterative Relational Classification

In this section, we will describe the machine learning algorithms behind AS-
SAM’s annotation wizard in greater detail. The OATS algorithm for data aggre-
gation will be explained in the next section.

For our learning approach, we cast the problem of classifying operations and
datatypes in a Web Service as a text classification problem. Our tool learns
from Web Services with existing semantic annotation. Given this training data,
a machine learning algorithm can generalize and predict semantic labels for
previously unseen Web Services.

In a mixed-initiative setting, these predictions do not have to be perfectly
accurate to be helpful. In fact, the classification task is quite hard, because the
domain ontologies can be very large. But for that reason it is already very helpful
for a human annotator if he or she would have to choose only between a small
number of ontological concepts rather than from the full domain ontology. In
previous work [5] we have shown that the category of a services can be reliably
predicted, if we stipulate merely that the correct concept be one of the top few
(e.g., three) suggestions.

Terminology. Before describing our approach in detail, we begin with some ter-
minology. By introducing this terminology we do not advocate a new standard.
Instead we believe that our approach is generic and independent of the actual
format used for the semantic Web Service description.

We use the word category to denote the semantic meaning of the service as
a whole. The category ontology corresponds to a profile hierarchy in OWL-S.

We use the word domain to denote the semantic meaning of an operation. An
operation in WSDL usually maps to an atomic process in OWL-S, but there is

no direct relation of the domain of an operation to OWL-S, as atomic processes
are only characterized through their inputs, outputs, preconditions and effects.
One could think of the domain as describing the semantics of the preconditions
and effects, but we currently do not use the domain annotation for our OWL-S
export.

We use the word datatype to denote the semantic type of a single variable.
This usage of the word datatype is consistent with how the word is used when
describing a property in an ontology, but should not be confused with low-level
syntactic datatypes such as “integer” or “string”.

For information retrieval or classification tasks the objects that are classi-
fied or searched are usually referred to as documents. When we use the word
document, we mean the Web Service as whole as represented by its WSDL. We
use document part to denote an object within the Web Service that we want
to classify: Operations, input and output messages, XML schema types etc. are
document parts.

Iterative Classification Ensemble. The basic idea behind our approach is to ex-
ploit the fact that there are dependencies between the category of a Web Service,
the domains of its operations and the datatypes of its input and output parame-
ters. In previous work [5], we exploited these dependencies in a Bayesian setting
and evaluated it on Web forms. In this paper, we present an iterative classifica-
tion algorithm similar to the one introduced by Neville and Jensen in [6].

Like any classification system, our algorithm is based on a set of features of
the services, operations and parameters. Following [6], we distinguish between
intrinsic and extrinsic features. The intrinsic features of a document part are
simply its name and other text that is associated with it (e.g., text from the
occasional documentation tags). Extrinsic features derive from the relationship
between different parts of a document. We use the semantic classes of linked
document parts as extrinsic features.

Initially, when no annotations for a service exist, the extrinsic features are
unknown. After the first pass, where classifications are made based on the in-
trinsic features, the values of the extrinsic features are set based on the previous
classifications. Of course, these classifications may be partially incorrect. The
classification process is repeated until a certain termination criterion (e.g. either
convergence or a fixed number of iterations) is met. Fig. 2 shows an illustration
of the classification phase of the algorithm.

Our iterative algorithm differs in some points from Neville’s and Jensen’s
algorithm. In their approach, one single classifier is trained on all (intrinsic and
extrinsic) features. In a variety of tasks, ensembles of several classifiers have
been shown to be more effective (e.g., [7]). For this reason, we train two separate
classifiers, one on the intrinsic features (“A”) and one on the extrinsic features
(“B”), and vote together their predictions. Another advantage of combining the
evidence in that way is that the classifier cannot be mislead by missing features in
the beginning when the extrinsic features are yet unknown, because the classifier
trained on the extrinsic features is simply not used for the first pass.

We also introduce a second mode for incorporating the extrinsic features: We
train a set of classifiers on the intrinsic features of the datatypes, but each of
them is only on the subset of the instances that belong to one specific category.
This set of specialized classifiers is shown in Fig. 2 as “Aspec” and “A-s”.

Once we have classified the category of a service, we use the classifier for the
datatypes that has been trained on instances from that category3. To avoid bias-
ing the algorithm too strongly, we still combine the results of the Amx classifier
with the A classifier in each iteration. For each level we use either B or the Aspec

classifiers, but not both. We chose the Aspec method for the datatypes and the
B method for the category and the domain.

We did not exploit every possible dynamic extrinsic feature. We used static
extrinsic features on the domain and datatype level by incorporating text from
children nodes: Text associated with messages was added to the text used by the
operations classifier, and text associated with elements of complex types were
added to the text used by the datatype classifier classifying the complex type
itself. In Fig. 2 we denote this as “add”. Note that this appears to contradict
our earlier results [5], where we claimed that simply adding text from child
nodes does not help. In [5], we where classifying the category level only, and
the bag of words for the domain and datatype classifiers consisted of text for all
operations/datatypes in that service. In our present experiment, the classifier for
the operations and datatypes classify one single operation or element only, and
in this case it apparently helps to add more text. The features we used and the
feedback structures for the dynamic features are based on empiric preliminary
tests. We used a fixed number of 5 iterations. Fig. 2 shows the setup that was
eventually used.

In the evaluation section, we report results for this setup. For a more detailed
discussion of the parameters of our algorithm and their effects the reader is
referred to our paper [8] that describes the algorithm in greater detail from a
machine learning point of view.

Evaluation. We evaluated our algorithm using a leave-one-out methodology.
We compared it against a baseline classifier with the same setup for the static
features, but without using the dynamic extrinsic features.

To determine the upper bound of improvement that can be achieved using
the extrinsic features, we tested our algorithm with the correct class labels given
as the extrinsic features. This tests the performance of predicting a class label
for a document part when not only the intrinsic features but also the dynamic
features, the labels for all other document parts, are known.

We also compared it against a non-ensemble setup, where the extrinsic fea-
tures are not added using a separate classifier but rather are just appended to

3 To avoid an over-specialization, these classifiers are actually not trained on instances
from a single category, but rather on instances from a complete top-level branch of
the hierarchically organized category ontology. Note that this is the only place where
we make use of the fact that the class labels are organized as an ontology, and we
do not do any further inference.

Service
Category

Messages
Datatypes

A-s

Operations
Domains

B

B add

add

A B Aspec

Static features Dynamic features Specialised Classifiers

Input

Output

vote Prediction

Fig. 2. Feedback structure and algorithm.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

A
cc

u
ra

cy

Tolerance, Category

Baseline

3

3
3 3 3

3

3

Assam

+

+
+

+ + +

+
Ceiling

2

2
2

2
2 2

2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Domain

3

3

3
3

3
3

+

+
+

+
+

+

2

2

2
2 2 2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Datatypes

3

3

3
3

3
3

+

+

+
+

+
+

2

2

2

2
2

2

Fig. 3. Accuracy of our algorithm on the three kinds of semantic metadata as a function
of prediction tolerance.

the static features. Classification is then done with a single classifier. This setup
closely resembles the original algorithm proposed by Neville and Jensen. Again,
the same set of static features was used.

In the evaluation we ignored all classes with one or two instances, such as
occurred quite frequently on the datatype level. The distributions are still quite
skewed and there is a large number of classes. There are 22 classes on the category
level, 136 classes on the domain level and 312 classes on the datatype level.

Fig. 3 show the accuracy for categories, domains and datatypes. As mentioned
earlier, in mixed-initiative scenario such as our semi-automated ASSAM tool, it
is not necessary to be be perfectly accurate. Rather, we strive only to ensure that
that the correct ontology class is in the top few suggestions. We therefore show
how the accuracy increases when we allow a certain tolerance. For example, if
the accuracy for tolerance 9 is 0.9, then the correct prediction is within the top
10 of the ranked predictions the algorithm made 90% of the time.

We could not achieve good results with the non-ensemble setup. This setup
scored worse than the baseline. For the datatypes, even the ceiling accuracy was
below the baseline.

Note that on the category level incorporating the additional evidence from
the extrinsic features does not help. In fact, for some tolerance values the ceiling
accuracy is even worse than the baseline.

On the datatype level, our algorithm achieves 31.2% accuracy, where as the
baseline scores only at 24.5%. Thus, our algorithm improves performance by
almost one third. The overall performance might be considered quite low, but due
to the high number of classes it is a very hard classification problem. Given that
in two of three cases the user has to choose only between 10 class labels rather
than between all 312 labels in the datatype ontology we are still convinced that
this could save a considerable amount of workload. We evaluated the statistical
significance of the performance improvement of our algorithm with a Wilcoxon
Matched-Pairs Signed-Ranks Test. Our algorithm performs significantly better
with a confidence value of over 99.9%.

On the domain level, our approach increases the accuracy for exact matches
from 26.3% to 28%. This is statistically significant with a confidence value of
96% according to a Wilcoxon Test. For both significance tests we performed a
20-fold random split.

Related work. We already mentioned the algorithm by Neville and Jensen [10],
but iterative classification algorithms were also used for link-based hypertext
classification by Lu and Getoor [11]. Relational learning for hypertext classifica-
tion was also explored by Slattery et al., e.g. [13, 15]. A difference between their
problem setting and ours is that the links in our dataset are only within one
Web Services, where in the hypertext domain potentially all documents can link
to each other.

4 Aggregating data from Web Services

ASSAM uses the machine learning technique just described to create semantic
metadata that could assist (among other applications) a data integration sys-
tem that must identify and invoke a set of Web Services operations that can
answer some query. In order to automatically aggregate the resulting hetero-
geneous data into some coherent structure, we are currently developing OATS
(Operation Aggregation Tool for Web Services), a schema matching algorithm
that is specifically suited to aggregating data from Web Services.

While most schema matching algorithms don’t consider instance data, those
that do take as input whatever data happens to be available. In contrast, OATS
actively probes Web Services with a small set of related queries, which results
in contextually similar data instances and greatly simplifies the matching pro-
cess. Another novelty of OATS is the use of ensembles of distance metrics for
matching instance data to overcome the limitations of any one particular metric.
Furthermore, OATS can exploit training data to discover which distance metrics
are more accurate for each semantic category.

As an example, consider two very simple Web Service operations that return
weather information. The first operation may return data such as

<weather><hi>87</hi><lo>56</lo><gusts>NE, 11 mph</gusts></weather>

while the second operation may return data such as
<fcast><tmax>87</tmax><tmin>57</tmin><wndspd>10 mph (N)</wndspd></fcast>.

The goal of data aggregation is to consolidate this heterogeneous data into a
single coherent structure. This sort of schema matching task is challenging in
many ways. The schemas to be matched are usually created by different people,
so there may be major differences in the structure and the vocabulary used.
Related schemas may well not overlap much – the element set of one schema S
may form only a small subset of the element set of another schema T . Further-
more, mappings between elements may be complex: an element of S may not
match a single element, but some combination of elements in T . Finally, schema
matching is computationally expensive because the number of potential matches
is exponential in the size of the schemas.

In order to aggregate Web Service operation outputs, the semantically related
elements among this heterogeneous XML data must be identified and grouped.
Web Service aggregation can therefore be viewed as an instance of the schema
matching problem. A major difference between traditional schema matching and
our Web Service aggregation task is that we can exert some control over the
instance data. Our OATS algorithm probes each operation with arguments that
correspond to the same real-world entity. For example, to aggregate operation
O1 that maps a ZIP code to its weather forecast, and operation O2 that maps a
latitude/longitude pair to its forecast, OATS could first select a specific location
(e.g., Seattle), and then query O1 with “98125” (a Seattle ZIP code), and query
O2 with “47.45N/122.30W” (Seattle’s geocode). Probing each operation with
the related arguments should ensure that the instance data of related elements
will closely correspond, increasing the chances of identifying matching elements.

As in ILA [16], this probe-based approach is based on the assumption that the
operations overlap, i.e, there exists a set of real-world entities that are covered
by all of the sources to be aggregated. For example, while two weather Web
Service need not over exactly the same locations in order to be aggregated, we
do assume that there exists a set of locations covered by both.

We assume that the data integration system knows how to invoke the op-
erations being aggregated, i.e that it can map the real-world probe entities to
values for the operations’ input parameters.

The OATS algorithm. The input to the OATS algorithm is a set of Web Ser-
vice operations O = {o1, o2, . . . , on}, a set of probe objects P = {p1, . . . , pm},
sufficient metadata about the operations so that each operation can be invoked
on each probe (V = {v1, . . . , vn}, where vi is a mapping from a probe pk ∈ P
to the input parameters that will invoke oi on pk)4, and a set of string distance
metrics D = {d1, d2, . . .}.

When invoked, an operation oi ∈ O generates data with elements Ei =
{ei

1, e
i
2, . . .}, where E = ∪iEi is the set of all the operations’ elements. The

output of the OATS algorithm is thus a partition of E. The intent is that this
partition should correspond to semantically equivalent sets of elements.

One of the distinguishing features of our algorithm is the use of an ensemble of
distance metrics for matching elements. For example, when comparing the gusts
and wndspd instance data above, it makes sense to use a token based matcher
such as TFIDF, but when comparing hi and tmax, an edit-distance based metric
such as Levenshtein is more suitable. The OATS algorithm calculates similari-
ties based on the average similarities of an ensemble of distance metrics. Later,
we describe an extension to OATS which assigns weights to distance metrics
according to how well they correlate with a set of training data.

The OATS algorithm proceeds as follows. Each of the n operations are in-
voked with the appropriate parameters for each of the m probe objects. The
resulting nm XML documents are stored in a three-dimensional table T . The
T [i, ·, ·] entries of this table relate to operation oi ∈ O, and the T [·, ·, k] entries re-
late to probe pk ∈ P . Specifically, T [i, j, k] stores the value returned for element
ei
j ∈ Ei by operation oi for probe pk.

Each element is then compared with every other element. The distance
between an element pair (ei

j , e
i′

j′) ∈ E × E is calculated for each string dis-
tance metric d` ∈ D, and these values are merged to provide an ensemble dis-
tance value for these elements. The similarity between two elements ei

j ∈ Ei

and ei′

j′ ∈ Ei′ is defined as D(ei
j , e

i′

j′) = 1
|D|

∑
`(d̄`(ei

j , e
i′

j′) − m(d̄`))/R(d̄`),

where d̄`(ei
j , e

i′

j′) = 1
m

∑
k d`(T [i, j, k], T [i′, j′, k]), M(d̄`) = max(ei

j
,ei′

j′)
d̄`(ei

j , e
i′

j′),

m(d̄`) = min(ei
j
,ei′

j′)
d̄`(ei

j , e
i′

j′), and R(d̄`) = M(d̄`)−m(d̄`).

By computing the average distance d̄` over m related sets of element pairs,
we are minimizing the impact of any spurious instance data. Before merging
the distance metrics, they are normalized relative to the most similar and least
similar pairs, as different metrics produce results in different scales.

To get the ensemble similarity D(ei
j , e

i′

j′) for any pair we combine the normal-
ized distances for each dj . In the standard OATS algorithm, this combination is
simply an unweighted average. We also show below how weights can be adap-
tively tuned for each element-metric pair.

Given the distances between each pair of elements, the final step of the OATS
algorithm is to cluster the elements. This is done using the standard hierarchical
agglomerative clustering (HAC) approach. Initially, each element is assigned to

4 In our implementation, the probes are encoded as a table of attribute/value pairs,
and vi is the subset of attributes needed for operation oi.

its own cluster. Next, the closest pair of clusters is found (using the single, com-
plete, or average link clustering methods) and these are merged. The previous
step is repeated until some termination condition is satisfied. At some point in
the clustering, all of the elements which are considered similar by our ensemble
of distance metrics will be merged, and further iterations would only force to-
gether unrelated clusters. It is at this point that we should stop clustering. Our
implementation relies on a user-specified termination threshold.

Learning distance metric weights. Instead of giving an equal weight to each
distance metric for all elements, it would make sense to treat some metrics as
more important than others, depending on the characteristics of the data being
compared. We now show how we can exploit training data to automatically
discover which distance metrics are most informative for which elements. The
key idea is that a good distance metric should have a small value between pairs
of semantically related instances, while at the same time having a large value
between pairs of semantically unrelated instances.

We assume access to a set of training data: a partition of some set of elements
and their instance data. Based on such training data, the goodness of metric dj

for a non-singleton cluster C is defined as G(dj , C) = G′(dj , C)/ 1
c

∑
C′ G′(dj , C

′),
where c is the number of non-singleton clusters C ′ in the training data, Dintra(dj , C)
is the average intra-cluster distance—i.e., the average distance between pairs
of elements within C, Dinter(dj , C) is the average inter -cluster distance—i.e.,
the average distance between an element in C and an element outside C, and
G′(dj , C) = Dinter(dj , C)−Dintra(dj , C). A distance metric dj will have a score
G(dj , C) > 1 if it is “good” (better than average) at separating data from cluster
C from data outside the cluster, while G(dj , C) < 1 suggests that dj is a bad
metric for C.

Given these goodness values, we modify OATS in two ways. The first ap-
proach (which we call “binary”) gives a weight of 1 to metrics with G > 1,
and gives weight 0 to (ie, ignores) metrics with G < 1. The second approach
(“proportional”), assigns weights that are proportional to the goodness values.

Evaluation. We evaluated our Web Service aggregation tool on three groups of
semantically related Web Service operations: 31 operations providing informa-
tion about geographical locations, 8 giving current weather information, and 13
giving current stock information. To enable an objective evaluation, a reference
partition was first created by hand for each of the three groups. The partitions
generated by OATS were compared to these reference partitions. In our evalu-
ation, we used the definition of precision and recall proposed by [5] to measure
the similarity between two partitions.

We ran a number of tests on each domain. We systematically vary the HAC
termination threshold, from one extreme in which each element is placed in its
own cluster, to the other extreme in which all elements are merged into one large
cluster.

The ensemble of distance metrics was selected from Cohen’s SecondString
library [17]. We chose eight representative metrics, consisting of a variety of

address city state fullstate zip areacode lat long icao

110 135th Avenue New York NY New York 11430 718 40.38 -74.75 KJFK
101 Harborside Drive Boston MA Massachusetts 02128 781 42.21 -71.00 KBOS
18740 Pacific Highway South Seattle WA Washington 98188 206 47.44 -122.27 KSEA
9515 New Airport Drive Austin TX Texas 78719 512 30.19 -97.67 KAUS

Fig. 4. The four probe objects for the zip and weather domains.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90 100

F
1

HAC termination threshold

Levenstein
TFIDF

Ensemble

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Levenstein
TFIDF

Ensemble

Fig. 5. Comparison of ensemble method against Levenshtein and TFIDF: F1 as a
function of the HAC termination threshold (left), and precision/recall curve (right).

character-based, token-based and hybrid metrics: TFIDF, SlimTFIDF, Jaro,
CharJaccard, Levenstein [sic], SmithWaterman, Level2Jaro and Level2JaroWinkler.

Each probe entity is represented as a set of attribute/value pairs. For exam-
ple, Fig. 4 shows the four probes used for the weather and location information
domains. We hand-crafted rules to match each of an operation’s inputs to an
attribute. To invoke an operation, the probe objects (ie, rows in Fig. 4) are
searched for the required attributes. With semantically annotated Web Services,
attributes could be automatically matched with the input fields of operations.

Results. First, we show that by using an ensemble of different string metrics,
we achieve better results than using the metrics separately. Fig. 5 compares
the ensemble approach to the Levenshtein and TFIDF metrics individually. We
report the average performance over the three domains in two ways: F1 as a
function of the HAC termination threshold, and a precision/recall curve. Note
that, as expected, F1 peaks at an intermediate value of the HAC termination
threshold. The average and maximum F1 is higher for the ensemble of metrics,
meaning that it is much less sensitive to the tuning of the HAC termination
threshold.

We now compare the performance of OATS with our two methods (binary
and proportional) for using the learned string metric weights. These results are
based on four probes. We used two-fold cross validation, where the set of op-
erations was split into two equal-sized subsets, Strain and Stest. We used just
two folds due to the relatively small number of operations. Strain was clustered
according to the reference clusters, and weights for each distance metric were
learned. Clustering was then performed on the entire set of elements. Note that

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80 90 100

F
1

HAC termination threshold

proportional
binary

untrained

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

proportional
binary

untrained

Fig. 6. Performance of OATS: F1 as a function of the HAC termination threshold
(left), and precision/recall curve (right).

we clustered the training data along with the test data in the learning phase,
but we did not initialize the clustering process with reference clusters for the
training data prior to testing. We measured the performance of the clustering
by calculating precision and recall for just the elements of Stest. Fig. 6 shows F1
as a function of the HAC termination threshold, and the precision/recall curves
for the binary and proportional learners and the original algorithm. Although
neither of the learning methods increase the maximum F1, they usually increase
the average F1, suggesting that learning makes OATS somewhat less sensitive
to the exact setting of the HAC termination threshold.

Finally, we have found that accuracy improves with additional probe queries,
but that performance is beginning to level off after just a few probes. Recall
that we used up to four probe queries. We note that accuracy improved more
between one and two queries, than between three and four. We anticipate that
the performance increase will rapidly slow beyond a relatively small number
of probes. Note that we did not carefully select the probe objects in order to
maximize performance. Indeed, some of the operations returned missing elements
for some probes. Our experiments show that the active invocation approach
means makes OATS robust to even a “bad” choice of probes.

Related Work. The schema matching problem has been studied in various do-
mains since the early 1980’s, and many different approaches have been suggested,
each exploiting various features of the instance data and/or schema. This previ-
ous work can be broadly classified according to whether it is schema vs. instance
based, and whether it is structural or linguistic based. While most prior research
on matching systems has focused on the schema level (e.g. [18–20]), the OATS
algorithm demonstrates that instance-based methods are well suited to scenarios
such as Web Service aggregation where instance data can be actively requested.

OATS has been influenced specifically by two prior research efforts: LSD
[21] and ILA [16]. LSD uses similarities computed at both the schema and the
instance level. LSD treats schema matching as a classification task – a number
of trained learner-modules predict labels for each element and these predictions

are combined with a meta learner. In contrast to OATS, a training phase is
obligatory in LSD.

ILA [16] learns models of relational Web information sources, where each
model consists of a number of attributes and values. ILA maps between its
own and the source’s relational schemas by probing the information source with
values from its model, and explaining each field of the resulting string in terms
of its own internal model categories. Like OATS, ILA assumes that there is some
overlap between its objects and the contents of each source.

5 Discussion

In this paper, we have presented ASSAM, a tool for annotating Semantic Web
Services. We have presented the WSDL annotator application, which provides
an easy-to-use interface for manual annotation, as well as machine learning as-
sistance for semi-automatic annotation. Our application is capable of exporting
the annotations as OWL-S.

We have presented a new iterative relational classification algorithm that
combines the idea of existing iterative algorithms with the strengths of ensemble
learning. We have evaluated this algorithm on a set of real Web Services and
have shown that it outperforms a simple classifier and that it is suitable for
semi-automatic annotation.

We have also shown how semantically annotated Web Services could be used
to enhance data aggregation systems, and how Web Service aggregation can
be viewed as an instance of the schema matching problem in which instance
data is particularly important. We have illustrated how actively probing Web
Services with a small number of inputs can result in contextually related instance
data which makes matching easier. Our experiments demonstrate how using an
ensemble of distance metrics performs better than the application of individual
metrics. We also proposed a method for adaptively combining distance metrics
in relation to the characteristics of the data being compared, which although
not always successful, usually increased the average F1. We plan to examine the
use of more sophisticated techniques for aggregating the ensemble matchers.

One of the constraints of our aggregation system is that there must be an
overlap between the sources, i.e all of the sources must “know about” the entity
being queried. Ultimately, we would like our system to learn new objects from
some information sources that could be used to probe other partially overlap-
ping sources. We envisage a tool that, given a set of seed Web Services and probe
queries, could find sets of related Web Services and learn new probe objects to
query them with. Such visions would require the automated discovery, composi-
tion and invocation of Web Services, but this interoperability requires Services
to be semantically annotated. We believe that the methods we have presented
here are a reasonable first step towards the realization of these goals.

Acknowledgments. This research was supported by grants SFI/01/F.1/C015
from Science Foundation Ireland, and N00014-03-1-0274 from the US Office of

Naval Research. We thank Martina Naughton, Jessica Kenny, Wendy McNulty
and Andrea Rizzini for helping us manually annotating the corpus of semantic
Web Services used in our evaluation. Thanks to Thomas Gottron for a helpful
discussion.

References

1. The DAML Services Coalition: OWL-S 1.0. White Paper (2003)
2. Paolucci, M., Srinivasan, N., Sycara, K., Nishimura, T.: (Towards a semantic

choreography of web services: From WSDL to DAML-S)
3. Patil, A., Oundhakar, S., Sheth, A., Verma, K.: Meteor-s web service annotation

framework. (2004)
4. Sabou, M.: From software APIs to web service ontologies: a semi-automatic ex-

traction method (2004)
5. Heß, A., Kushmerick, N.: Learning to attach semantic metadata to web services.

In: 2nd Int. Sem. Web. Conf. (2003)
6. Neville, J., Jensen, D.: (Statistical relational learning: Four claims and a survery)
7. Dietterich, T.G.: Ensemble methods in machine learning. In: Lecture Notes in

Computer Science. (Volume 1857.)
8. Heß, A., Kushmerick, N.: Interconnected multi-view learning. In: Submitted to

the European Conference on Machine Learning. (2004)
9. Marques, O., Barman, N.: Semi-automatic semantic annotation of images using

machine learning techniques. In: 2nd Int. Sem. Web. Conf. (2003)
10. Neville, J., Jensen, D.: Iterative classification in relational data. (In: AAAI Work-

shop SRL)
11. Lu, Q., Getoor, L.: Link-based classification. (In: Int. Conf. on Machine Learning)
12. Chakrabarti, S., Dom, B.E., Indyk, P.: Enhanced hypertext categorization using

hyperlinks. (In: SIGMOD, ACM Int. Conf. on Management of Data)
13. Ghani, R., Slattery, S., Yang, Y.: Hypertext categorization using hyperlink patterns

and meta data. (In: 18th Int. Conf. on Machine Learning)
14. Craven, M., Slattery, S., Nigam, K.: First-order learning for web mining. (In:

European Conf. on Machine Learning)
15. Yang, Y., Slattery, S., Ghani, R.: A study of approaches to hypertext categoriza-

tion. Journal of Intelligent Information Systems 18 (2002) 219–241
16. Perkowitz, M., Etzioni, O.: Category translation: Learning to understand infor-

mation on the internet. (In: Int. Joint Conf. on AI)
17. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string distance

metrics for name-matching tasks. (In: Int. Joint Conf. on AI, Workshop on Inf.
Integr. on the Web)

18. Popa, L., Velegrakis, Y., Miller, R.J., Hernandez, M.A., Fagin, R.: Translating web
data. In: VLDB. (2002) 598–609

19. Beneventano, D., Bergamaschi, S., Castano, S., Corni, A., Guidetti, R., Malvezzi,
G., Melchiori, M., Vincini, M.: Information integration: The MOMIS project
demonstration. In: The VLDB Journal. (2000) 611–614

20. Do, H., Rahm, E.: Coma - a system for flexible combination of schema matching
approaches. In: VLDB. (2002)

21. Doan, A., Domingos, P., Halevy, A.: Learning to match the schemas of data sources:
A multistrategy approach. Mach. Learn. 50 (2003) 279–301

